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Lunate-tail swimming propulsion as a problem 
of curved lifting line in unsteady flow. 

Part 1. Asymptotic theory 

By H. K. CHENG AND LUIS E. MURILLOt 
Department of Aerospace Engineering, University of Southern California, Los Angeles 

(Received 3 January 1983 and in revised form 2 August 1983) 

The asymptotic theory of a high-aspect-ratio wing in an incompressible flow is 
generalized to an oscillating lifting surface with a curved centreline in the domain 
where the reduced frequency based on the half-span is of order unity. The formulation 
allows applications to lightly loaded models of lunate-tail swimming and ornithopter 
flight, provided that the heaving displacement does not far exceed the mean wing 
chord. The analysis include the quasi-steady limit, in which the crescent-moon wing 
problem considered earlier by Thurber (1965) is solved and several aerodynamic 
properties of swept wings are explained. 

Among the important three-dimensional and unsteady effects are corrections for 
the centreline curvature and for the spanwise components of the locally shed vortices. 
Comparison of the lift distributions obtained for model lunate tails with data 
computed from the doublet-lattice method (Albano & Rodden 1969) lends support to 
the asymptotic theory. 

1. Introduction 
Evolutionary changes and differentiation of a successful group to suit an environ- 

ment, i.e. adaptive radiation, has occurred in all major phyla in the animal kingdom 
to produce a spectacularly diverse range of structure and behaviour (Gregory 1936; 
Carter 1940). Yet it is often possible to detect common adaptive mechanisms in 
taxonomically remoted groups, as similar solutions are evolved in response to similar 
or analogous selective pressures. Such is apparently the case for those nektonic 
animals near the top of the food pyramid where rapid and efficient movement is of 
paramount importance. Convergent evolution of the carangiform locomotion can be 
identified from many species in teleost fishes, in elasmobranchs and in cetacean 
mammals. Carangiform swimming is characterized by the restriction of noticeable 
undulation to the posterior end of the body, where the caudal fin becomes primarily 
responsible for thrust generation. According to Marshall (1966), the corresponding 
morphological adaptations are : (i) a compact, muscular, airship-like body; (ii) a 
pronounced necking of the body anterior to the tail; and (iii) a crescent-moon or 
sickle-shaped caudal fin of high aspect ratio, called the Zunate tail. These features are 
illustrated by Norman & Fraser (1937), and also in figure 18 of Kramer (1960) and 
figure 6 of Lighthill (1969). The evolution of the carangiform mode of locomotion with 
the lunate tail is undoubtedly an example of the shaping influence of the ocean water, 
but the details regarding the precise nature of this influence have yet to be elucidated. 

Lighthill (1969,1970) has outlined the hydromechanical reasonsfor this convergence 
t Present address : Boeing Commercial Airplane Co., Seattle, Washington 98124. 
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and gave an analysis of the thrust and propulsive efficiency for a 2-dimensional flat 
plate in heaving and pitching oscillations in an otherwise uniform stream. He also 
introduces a parameter that quantifies the important concept of proportional 
feathering, essential for an efficient propu1sion.t In  an optimization analysis, Wu 
(1971b) finds that a very high propulsive efficiency close to unity (estimated to be 
0.9M.99)  is attainable in a 2-dimensional model. The performance at high efficiency 
may then be limited by the 3-dimensional effects which comprise the subjects of 
analysis in this and subsequent parts of this paper. 

This paper will present the development of an asymptotic theory for oscillating 
lifting surfaces of high aspect ratio in a frequency range where the effect of the 
unsteady wake vorticity is comparable to the 3-dimensional and other corrections. 
I ts  application to the performance analysis of a model lunate tail is studied in another 
paper (Part 2), where an extension to the study of an ornithopter model will also be 
presented. 

1.1. Approach 

Numerical methods for analysing steady and unsteady 3-dimensional problems are 
available (see e.g. Davis 1963; Belotserkovskii 1967, 1977; Albano & Rodden 1969; 
Ashley & Rodden 1972) and have been employed by Chopra & Kambe (1977) and 
Lan (1979) in their study of the lunate-tail problem. However, the asymptotic method 
adopted below provides a greater simplicity in analyzing the major 3-dimensional and 
unsteady effects. As is well known, the classical lifting-line theory (Prandtl 1918) can 
be identified with the asymptotic solution to the problem of uniform steady flow past 
a high-aspect-ratio, unyawed, straight wing (Van Dyke 1964a, b ) .  Lighthill (1969) 
points out that the analysis of relevant to the lunate-tail propulsion should treat the 
influence of the sweep and curvature of the planform’s centreline, which is the focus 
of the present analysis. The results obtained are applicable also to an ornithopter 
model not explicitly studied here. 

An extension of the classical aerodynamic theory to a curved lifting line for 
oscillating wings also has its own merit, more especially, its promise for a more 
explicit, analytical approach to the dynamic aeroelastic stability of high-aspect-ratio 
swept wings and rotors (cf. e.g. Weisshaar & Ashley 1973). This paper is based on 
materials from two unpublished works (Cheng & Murillo 1982; Murillo 1979), where 
much of the analyses and discussions omitted here are presented. 

1.2. Pertinent 3-dimensional studies 

The most popular among earlier extensions of Prandtl’s lifting-line method is perhaps 
Weissinger’s 1942 ad hoc procedure for a swept wing (see Weissinger 1947), in which 
the upwash correction is computed a t  a control point from the contributions of both 
the discrete trailing vortices and a bound vortex representing the wing. There is an 
interesting earlier study by Dorodnitsyn (1944) on wings with a curved axis 
(centreline) and in side slip (yaw), which draws attention to the pronounced 
(logarithmically large) upwash associated with the sweep ; there, Weissinger’s pro- 
cedure was also adopted. Thurber (1965) studied a lifting surface of crescent-moon 
shape as an asymptotic theory for high-aspect-ratio wings, but did not solve the 
inner problem. Holten (1976a, b)  presented formulations for high-aspect-ratio swept 
wings in steady and unsteady flows; the equivalence of these and those of the 
asymptotic theory given below is not apparent. 

t This parameter controls the incidence of the wing section (at the pitch axis) with respect t o  
the local relative wind vector. 



Lunate-tail swimming as a curved lifting line. Part 1 329 

Recently, the asymptotic theory has been extended to a straight oblique wing by 
Cheng (1978a, b). The asymmetric span loadings obtained from explicit analytic 
solutions compared well with results from a panel method (Woodward 1973) for 
pivoted elliptic flat plates of high aspect ratio at  incidence. There has been a 
development of the lifting-line theory in transonic-flow research (Cheng & Meng 1979, 
1980; Cook 1979; Cheng et al. 1981 ; Cheng 1982a, b), where encouraging comparison 
with full-potential computer solutions (Jameson & Caughey 1977) has added 
substantial impetus to the present approach. 

1.3. Related unsteady analyses 

Sears (1938) analyses the problem of an infinitely long vibrating ribbon with a 
spanwise sinusoidal amplitude variation. The work was extended by Chopra (1974) 
to the study of thrust and propulsive efficiency of a rectangular plate in heaving and 
pitching oscillations. Motivated by the lunate-tail problem, James (1975) developed 
a linear analysis of a high-aspect-ratio wing oscillating in an otherwise uniform 
stream, using the Laplace-transform technique ; the study was incomplete, because 
the sweep and centreline curvature were not considered, and the thrust and 
propulsive efficiency were not analysed, and also an important part of the upwash 
correction was omitted (see Murillo 1979 ; Ahmadi 1980). However, an interesting 
property brought out by James (also independently by Cheng 1976) is that, in time 
ranges comparable to, and shorter than, the flow-transit time co/U (where co is a 
reference chord and U the free-stream speed), 3-dimensional effects on an unyawed, 
straight, oscillating wing are much wea,ker than those in the steady case. This is a 
consequence of the self-averaging effect of the periodic (cross-stream) vorticity in the 
far wake, applicable when the characteristic wavelength 2~ U / w  is small compared 
with the wingspan 2b, i.e. when D = wb/U % 1. This self-averaging effect is also 
expected for a swept wing, for which, however, other 3-dimensional corrections 
dependent on the local centreline curvature and local sweep angle are essential (Cheng 
1976). In the frequency range where D is of order unity, the unsteady (periodic) wake 
vorticity will contribute as much as other 3-dimensional corrections. This represents 
an important range for studies of lunate-tail and ornithopter propulsions ; the curved 
lifting-line problem will therefore be analysed mainly for this domain of D = O( 1). 
We note, in passing, that 52 may be expressed as the product kA,, where k is the 
reduced frequency based on the half reference chord co (k = wco/2U) and A ,  = 2b/c 
is an aspect ratio. 

Thrust and propulsive efficiency of oscillating flat plates have been studied 
numerically by Chopra & Kambe (1977), applying Davis’s (1963) kernel-function 
method, and by Lan (1979), applying an improved doublet-lattice method. The 
possibility and the condition for enhancing hydromechanical performance by the 
centreline sweep has not been made explicit therein. An essential point to be stressed 
in part 2 is that, to maintain a high efficiency, a suitable degree of (proportional) 
feathering should be kept at most of (if not all) the span stations. Part 2 will confirm 
that, by allowing a local pitch axis to control the feathering condition locally, the 
efficiency of a model lunate tail may increase with the averaged centreline sweep angle 
up to  a maximum determined by the required thrust, the reduced frequency and the 
aspect ratio. We note in passing that, for a swimming animal, proportional feathering 
of the caudal fin can be realized, though not perfectly, with the help of the passive 
response of the flexible tail structure to local hydromechanical forces. 
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2. The model problem 
2.1. Assumptions and parametric requirements 

We analyse the perturbations in an incompressible irrotational flow with a uniform 
free stream, generated by a thin oscillating surface. The latter will be referred to 
alternately as the wing or the fin. The disturbances are assumed to be weak enough 
for the application of a linear theory. We further limit the analysis to a planar wing, 
that is, a wing with the top and bottom surfaces close enough to a reference plane 
that the flow conditions on the wing, and the wake can be transferred analytically 
to a reference plane. 

The wing surfaces are assumed to be smooth with slopes no larger than O(a) at all 
times. The planform contour is also smooth. In  the limit A,+m, for finite b, 
the projection of the leading and trailing edges will approach a single curve in the 
reference plane z = 0. The latter is called the centreline of the planform, of which the 
curvature is assumed to be no larger than O(b-l). The potential solution is developed 
below for a high aspect ratio in a frequency range pertaining to  the limit A-’ --f 0 with 
a fixed 52 E LA, = O(1).  Inner and outer solutions will be constructed to describe 
the proper limit solutions in flow regions near and far from the wing section. Taking 
the order of the normalized perturbation potential to be E ,  the 3-dimensional and 
the unsteady corrections of interest will be of order aA;l (or more precisely sA;l In A, 
and eA;l). 

Physically, the trailing vortex sheet will roll up far downstream; but its effects on 
the outer and inner solutions are controlled directly by both the disturbances level E 

and the aspect ratio A,. As A, increases, or E decreases, the region of significant 
roll-up will move farther and farther from the wing. 

The nonlinear corrections not analysed generally are of order s2 ; strictly speaking, 
the validity of the present analysis would require a2 4 eAyl, i.e. 

a 4 A;l. (2.1a) 

However, the nonlinear corrections affecting forces and propulsion are of an order 
higher than e2, provided that the thickness contribution can be neglected. The 
requirement may therefore be relaxed to 

a = O(Ayl). (2 . lb)  

The error in the linear theory resulting from the transfer of the boundary condition 
on a highly deflected path to the reference plane may be quite significant if e is not 
small. Encouragingly, Chopra (1976) and Katz & Weihs (1977) have shown the 
influence of a large-amplitude transverse motion to be considerably weaker than 
suspected, especially with a low k and a transverse displacement not exceeding the 
fin chord. 

Only an isolated wing model will be considered. The presence of the body and dorsal 
fins and their shedding of vortices may profoundly influence the lunate-tail 
performance, as may be anticipated from the slender-fish theory (Wu 1971c). This 
represents another aspect for future study. 

2.2. Coordinates and variables 
Figure 1 ( a )  illustrates the two sets of coordinates to  be employed in the following 
analysis : a Cartesian system (2, y, z )  mainly for the outer solution and a curvilinear 
orthogonal system (x”, y”, 2”) for the inner solution around the wing section. In the 
Cartesian system, the free stream is directed along the positive x-axis; the wing is 
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(a 1 
FIGURE 1. The Cartesian coordinates (x, y, z )  and the orthogonal curvilinear coordinates (d’, y”, z ” ) ,  
the centreline of a planform, and definitions of 6 ,  co, c”, z,(y’), z,, ye, etc. Note that z, = sbZ,(y’) 
and may be comparable to c” in magnitude. 

sufficiently close to the plane z = 0 that the latter may serve as a reference plane for 
the lifting surface and its trailing vortex sheet. The wing centreline is given by 

4 b = 5,(;). 

Obviously, this corresponds to a lifting line and may be referred to as such. The set 
of normalized Cartesian variables to be used in the outer solution are 5 E x lb ,  jj = y/b, 
Z = z /b .  I n  the curvilinear orthogonal system, y“ is the distance measured along the 
centreline and X” the distance along the normal to the centreline a t  y”, oriented in 
the manner shown in figure 1 (a ) .  The set of dimensionless variables to be used in the 
innersolution,withz“ = z,is(x’, y‘, z’) :x’ = x”/c,,, y‘ = y”/b,z‘ = z”/c,.Thenormalized 
time variable is t’ = t = wt,  where w is a characteristic oscillation frequency. The value 
of y at the centreline for a fixed y’ is yc (cf. figure la). I n  subsequent applications 
it will prove more convenient to employ the coordinate system (x’, g,, 2’) instead of 

For a proper description of the geometry of the high-aspect-ratio swept wing in 
carangiform motion we represent the wing surface ordinate z = z, as a sum of two 
parts : 

(x’, y‘, 2‘). 

Z, = ebZ , (y ’ , t ’ )+s~ ,Z~(~’ , y ’ ,  t ’ ) ,  (2.3) 

where 2, and 2; are independent of E and A ,  (in the limit E + O ,  A p c o )  and the 
superscripts & refer to the upper and the lower surfaces respectively. The second term 
of (2.3) describes a regular airfoil section with the trailing edge assumed to be sharp. 
The term ebZ, is introduced to allow a substantial heaving displacement of the wing 
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or fin section, which may be as large as the wing chord. It will define a local reference 
line for each span station a t  a given time (figure 1 b ) ,  and has been called the wing 
baseline in Jones’ (1972) oblique-wing study. 

3. Linearized problem and inner solution 
The perturbation potential 4 in a lifting planar wing problem could be expressed 

in terms of a surface integral of the streamwise-velocity jump, y say, over the wing 
plane z = 0 (Jones & Cohen 1957; Ashley & Landahl 1965). The resulting problem 
can be reduced to solving an integral equation for y on the wing. We choose to analyse 
it, however, as a singular perturbation problem of the partial differential equation, 
where some of the important 3-dimensional corrections in the governing PDE and 
boundary conditions can be more directly identified, so that a clearer physical picture 
of the 3-dimensional influences may emerge. 

3.1. Equations linearized for small E 

The perturbation potential of interest is a solution to  the Laplace equation satisfying 
the impermeable boundary condition on the wing z = zw and the conditions on the 
trailing vortex sheet z = zTv. The governing equations with the boundary conditions 
linearized for E 4 1 are 

( 3 . 1 ~ )  

(3.1 b ,  c )  

where D/Dt = a/at + U a/ax, [r I] stands for the difference between the values on the 
upper and the lower surfaces, and the subscripts w and TV refer to the wing and the 
trailing vortex sheet. It is also required that q5 be continuous in the interior and that, 
in the far field, excluding the vicinity of the trailing vortex sheet ( r  = (y2+ z2)i = O(b) ,  
x+ a), the gradient of 4 tends to zero. I n  addition, the velocity and the pressure 
must remain finite a t  the trailing edge, fulfilling the Kutta  condition. 

I n  the curvilinear coordinates (x”, y“, z”) the linear system (3.1) becomes 

( 3 . 2 ~ )  

(3.2b, c )  

where D/Dt is now expressed as 

~a a sin A a 
Dt at ax” h, ay”’ 
- = -+ UCOSA-+ U p -  

where R-’ E dA/dy” is the local curvature of the centreline, h, is a coefficient in the 
metric dx2 + dy2 + dz2 = dx”2 + hi dy”2 + related to  R and x” as h, = 1 - x”/R. Note 
that the local sweep angle A is independent of x”, and that, a t  the centreline 
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I n  the inner region, where the normalized variables xf,  y‘, z’, t’ and the perturbation 

(3 .4)  

velocity potential 

are all of unit order, the (linear) system (3 .2)  can be reduced to 

6’ = +/ec0 U cos A 

(3 .5a)  

(3 .5c)  

where . . . stands for the omitted terms comparable to A;2, K‘ is a normalized centreline 
curvature based on the half-span, and k’ is a reduced frequency based on the local 
component velocity U, = Ucos A ,  i.e. K’ = - b dA/dy” = - b / R  = -m’(y) / (  1 + m 2 ) f ,  
k‘ = wc/2Un = k sec A = ATlSZ see A .  Note that k’ and A l l  are comparable under 
SZ = O( l ) ,  but distinguishing k’ from Afl  in (3 .5)  should facilitate an easy identification 
of the genuine unsteady effects. The right-hand members of (3 .5b)  are derived from 
an expansion of D(z,/eU,)/Dt, with 

I n  terms of x’, y‘ and z’ the wing surfaces are located a t  

Z’ = 2eA1Z,(y’,t’)+eZ,i(x’,z’;y’,t’). (3 .7)  

Thus, transferring the boundary conditions (3.5b, c) to z’ = 0 as in conventional 
planar-wing analysis would incur a relative error at the most of order €A1, under 
( 2 . 1 ~ ) .  On the other hand, i t  will be confirmed later that a displacement of the base 
line by an amount z’ = z: = O(1) does not actually invalidate the present analysis 
to  the order considered, and therefore the weaker requirement (2.1 b )  suffices and will 
be adopted. This becomes possible because, within the time-space domain where t‘, 
x’ and z’ all remain of unit order, neither the wing surfaces nor the trailing vortex 
sheet can depart from z’ = 2eA1Z,  by more than O(e) .  

3.2. Inner expansion and reduced problems 
We assume an inner expansion for 

$’ = ~ ( 0 ) ( x ’ , ~ ’ ; y ’ , t ’ ) + A ; 1 d ) ( 1 o ) ( x ’ , ~ ’ ; ~ ’ , t ) + k ’ ~ ( o 1 ) ( ~ ’ , ~ ’ ; ~ ’ ,  t’)+ ... (3 .8)  

with remainders comparable to Ay2, including terms of orders A;’k‘ and k‘2. A weak, 
non-algebraic (logarithmic) dependence of the coefficients on A;l or k’ will be allowed. 
The inner problem thus reduces to solving the three equation systems deduced from 
(3 .5)  
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I. 2-dimensional quasi-steady : 

11. 3-dimensional correction : 

(3 .9)  

I 
111. Unsteady correction : 

(3.10) 

In  the above, conditions on the wing and the trailing vortex sheet are applied a t  the 
baseline z’ = 2 4  2, = 2;. 

The solution G(O) to problem I corresponds to the strip theory, and may be 
represented by the real part of an analytic function W of a complex variable 

5 = x’+i(z’-zh). (3 .12)  

The complex velocity dWld5satisfying (3 .10)  and the Kutta condition is (Munk 1922; 
Ashley & Landahl 1965) 

(3.13) 

where a and b identify the leading and trailing edges in 6, respectively. The arguments 
of 5 - a  and 5-b  in ( [ -a) ;  and (5-b); are restricted to the interval ( 0 , 2 n ) .  Vo)  is 
determined by the wing geometry for the lifting problem, i.e. from (3 .6)  with 2; 
evaluated as the arithmetical mean of 2: and 2;. 

The solution for problem I1 may be constructed as a sum of three parts 

@(lo) = #(lo)  + # K O )  + VZO) (2’ - 4. ( 3 . 1 4 ~ )  

The last part allows for an upwash correction Vgo, to be determined later from 
matching with the outer solution. The second part is the particular solution satisfying 
both the Poisson equation and the trailing vortex sheet conditions of (3 .10)  : 

#KO, = ~’Re[i(z’-zL) W - 2 m  - /+m~’  [ X ’ @ ( ~ ) - ( ( Z ’ - - Z ~ )  !Po)]+#&, (3.14b) 

where Re denotes the real part, wo) is the imaginary part of the complex potential 
W(<), #$ is a Laplace solution, continuous everywhere except across the wing. The 
last term is introduced specifically to eliminate the unwanted singularities arising 

(a: ) 
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from - 2mx’ a@(O)/2y’. The part in question has been given earlier in Cheng’s (1978) 
oblique-wing analysis : 

a 1 db 
a Y  dY 

$& = 2 m a 7  0‘’) + 2m E,(b - U ) z  7 Re [ i ( c - U ) h  (5-b)h-  ic], ( 3 . 1 4 ~ )  

iw’(5) where ET is the constantt 
E, = lim- 

C+b (5-b);‘  

The remaining part is a Laplace solution, continuous everywhere except across 
the wing, and is needed for fulfillment of the wing boundary condition; it may be 
represented by an analytic function W(lo) whose derivative a“(, ,) /a~ can be written 
in the same form as W(5) in (3 .13) ,  with V0)  therein replaced by 

(3 .14d)  

where Vco) is an upwash correction to be determined by the matching. 

replacing y’. The result may again be represented as a sum of three parts 
The solution for the unsteady correction, problem 111, is similar to (3 .14) ,  with mt’ 

( 3 . 1 5 ~ )  

(3.156) 

and Q(ol) expressible in the same form as @ ( O ) ,  except that  V(O) there is replaced by 

( 3 . 1 5 ~ )  

We note that the addition of a homogeneous (eigen)solution to  $POl, in (3.15b) is 
unnecessary here, since the locations of the leading and trailing edges projected on 
the base line z’ = 2; are assumed to be time-independent, and a @ ( O ) / a t ‘  is expected 
to be no more singular than @ O ) .  

The asymptotic behaviour of the solution a t  151 $ 1 is essential to the matching 
for problems 1-111, and can be expressed as 

( 3 . 1 6 ~ )  

( 3 . 1 6 ~ )  

t It is assumed that the edge singularities are of the square-root type. For the case in which 
W(5) is logarithmically singular, a variant of ( 3 . 1 4 ~ )  applies (Cheng 1978). In  the third-order theory 
for a straight, unyawed high-aspect-ratio wing, the need to choose a suitable homogeneous solution 
to eliminate unwanted edge singularities also arises (Kida & Miyai 1978). 
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where 8 stands for the argument of fl, limited to  the range (0,27c), and F(O) is the 
circulation in the leading approximation, being equal to the potential jump a t  the 
trailing edge. The higher-order terms omitted are comparable t o  1 f11-2  in (3.16a), and 
a t  the most unity in (3.166) and (3.16~) .  The effects of these remainders as well as 
terms involving 2:: on the matching will be discussed later. 

In  the remaining part of this work, we will restrict consideration to  the motion 
that is sinusoidal in time: x, = Re (eiwt.2W), i.e. 

2, = Re (eit'zw), 2, = Re (eit'Z^,). (3.17) 

The system admits a solution q5' = Re (eiwt&), with corresponding forms for coefficients 
@(lo), and @(,I). Note that in terms of 5 and y', these coefficients are independent 

oft', even though 2:: = Re (eiWt2eA;'~,) is time-dependent. 
The perturbation pressure p' contributed by the lifting surface is, according to the 

linear theory, 
D p-p,=1 ZP u2c p = I  - 2PU2,Cb = - P g 4  

where Cb is a pressure coefficient based on the local component dynamic pressure. 
For sinusoidal motion, Cb is Re (eiwtpp), and pP can be computed as follows: 

(3.18) 

4. Outer problem and matching 
4.1. Curved lifting line and periodic wake vorticity 

I n  the outer region where 2, ij and 2 are of unit order, the wing and the inner region 
are perceived in the limit A ,  + co as a curved lifting line 2 = X,(y) in the wing plane 
5 = 0. The outer solution assumes the form 

- 
4 E -  q5 = $,(., y, 2, t; a)  +AT1 &(Z, y, 2 , i ;  a), (4.1) 

where a weak non-algebraic (logarithmic) dependence of 3, on A ,  is again allowed. 
The leading term, which vanishes far upstream and satisfies the trailing vortex sheet 
conditions, may be expressed in terms of the cross-stream component of the vorticity 
over the trailing vortex sheet, yTV, and on the wing; the latter has become a curved 
lifting line. Namely, 

$, = 3" + p .  ( 4 . 2 ~ )  

e uc, 

with 

(4.2b) 

a - -  
- I- ( t  - Q E l , Y , )  

p y x ,  y, 2, i;) = -- [I + y ] d x l d y l ,  ( 4 . 2 ~ )  
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where 5, = ~ ~ - x ~ ( y ~ )  and p1 = I ( x - ~ , ) ~ + ( y - y ~ ) ~ + z ~ j ? ;  also the relation expressing 
the convection of the cross-stream vorticity 

has been used.? The overbars on x,  y, and z have been omitted for convenience. 
For sinusoidal motion, for which 3, = Re (eiot$o), and To = Re (eiotf'), one can write 

$0 = $"(E, y, 2) +$'"(E, y, z ) ,  (4.3a) 

where 6 = x - x,(y) is the distance from the centreline at a fixed y on the wing plane. 
It follows from (4.2b, c )  that  

(4.3c) 

4.2. The inner-limit behaviour of $" and $TV 

The first part of $o, i.e. $", can be more conveniently expressed, writing u for y1 - y, 
as 

where R, now becomes R, = l[[-xc(y+ u )  + xC(y)l2 + u2 + z21i. At the centreline 
(6 = x = 0) the integrand is singular and non-integrable over u = 0. By subtracting 
from the integrand a suitable function with a similar behaviour, say 9, the resultant 
integral may yield a limit as [+z+O. This, together with the quadrature of g, should 
provide the inner-limit behaviour from $" in question. The latter behaviour has in 
fact been determined earlier in Cheng & Meng's (1980) transonic-flow study, with 
x,  y, z being replaced by the corresponding Prandtl-Glauert variables. For the 
matching to be performed subsequently, we shall transform (6,  y, z )  to (d, y' z'), 
observing in particular the relations 

where T((y')) = '(yc(y')), and yc is the value of y a t  the centreline for a given y'. 
We then arrive a t  the inner-limit behaviour of $" in terms of x', y' and 2': 

~((Y'))x"7c--l 4" N -T((y')) [R-O]-A;'-- 
1 -  tanA d 

27c 7c dy' 

In I X ' ~ + Z ' ~ ~ + A ; ~ ~ ~ ( Z + C ~ ) ,  ( 4 . 5 ~ )  
2R 

t Note that the ratio of the cross-stream and streamwise wake-vorticity components is 
- u-yar/at)/(ar/ay) = o ( ~ ~ / u )  = o(q. 
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1 -y 1 +sin A 
1 + y 1 - sinA 

[In [A:( 1 -y2) see2 A I + 21 sinA --In - 
47c dy 

+ ~ ~ ~ l T ( y l ) - - T / ( y ) [ l  -sinA sgn (y,-y)]dy,, (4.5b) 
Y1-Y 

1 d A  - 
Cc = - - - ~ r ( y )  [lnIA:sec2A(1-y2)(-2] 

87c dy 

1 dA - 
2 dy’ 

with a(y1,y) 3 %!(Y+u)--c(Y). 
Next we consider the second part of J,,. Expressing q?L(&-tl, y, z )  in ( 4 . 3 ~ )  by (4.4) 

and interchanging the order of integration with respect to t1 and u, the part in 
question can be expressed as 

(4.6a) 

where P 
as a sum 

with 

(u2+z2)i, ct = a(y1,y) = xc (y+u) -xc (y ) ;  the function I can be arranged 

= Q(5,  p ,  a, Q) + E@, a, Q), I ( t j p ,  01, 

(4.6b) 

Note that the part E of I is independent of (. 
I n  developing JTV of (4.6) for small ( and z ,  we must make use of the corresponding 

behaviour of Q for small 5, as well as that  of E for small p .  The expression for JTV 

in the inner limit, after changing variables (6 ,  y, z )  to (d, y’, z’) ,  may finally be brought 
down to - 

JTV - ik’z’ To In 12’2 + 2’21 - ik’z’ QYC) - (n-o)-ik’z’(cy+c:), (4.7a) 27c 7c 
with 

(4.7 b )  

C Y = -  - ‘Os A s’ ____ ‘(”) {E( Iyl - yJ , a, Q) + eiRa [a - (a2 + (yl - y)’):]} dy,. (4.7 c) 
2.n -1 (Yl-Y)2 
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4.4. Matching and discussions 

With the inner-limit behaviour of $o = $” + $TV furnished above and the outer-limit 
behaviour of & ( O ) ,  @(lo), and @O1) known from (3.16), the outer solution $ and the 
inner solution & (after being multiplied by cos A(y‘)) may now be matched in the 
common domain 

1 6 lgl G A,.  (4.8) 
With the exception of a line-doublet term from @ ( O )  cos A ,  two line-vortex terms from 
A;1 &(lo) cos A and l c&(O1) ,  and also a line-source term arising from the displacement 
of the base line, the inner solution 8 cos A and the outer solution $ can be matched 
to all terms shown in (3 .16) ,  (4.5) and (4 .7) ,  provided that 

T( (y’)) = T(O)(y’) cos A ,  

Vgo) cos A = 2(Z+Zc), Vgl, cosA = -i(Zy+Zf). 
(4.9) 

Thus the circulation of the lifting line p(y) = p((y”)) can be identified, and both the 
quasi-steady and unsteady upwash corrections Vgo, and Vg,, can now be determined. 
The terms not matched have magnitudes which are at most of order AT1 In A ,  under 
condition (4.8), and may be accounted for in matching carried out to a higher order. 

In  the far-field of $, cf. (3.16), termsproportional to A;’ zip(o) are source-like; they 
represent a departure from the planar-wing requirement and are in fact the nonlinear, 
superharmonic corrections to the outer flow. From the matching analysis it becomes 
apparent that, as long as dl = 0(1), i.e. requirement ( 2 . l b ) ,  the allowance for 
2; = 0(1) introduces an error no larger than that for = O ( B ) .  Therefore the effects 
on @ or & will be no worse than O(s21nA,). 

The logarithmic upwash 

An important difference from the classical result is the explicit presence of the 
logarithm of the aspect ratio in the upwash corrections, t2 = A;’ Vco) + k‘V&. They 
can be singled out from (4 .5)  and (4 .7)  as 

dA - & - - -  In A’ ( g 2  sin A +-Tcos A + i 2 0 f  sec A 
2nA1 dy dY 

(4.10) 

which represents a strong correction to the local flow angle. The first and the third 
terms on the right of (4.10) signify effects of the spanwise component of the locally 
and temporally shed vorticities. The second term give the self-induced effect of the 
curved bound vortex. The first term is ineffective near a symmetry plane where A 
or df /dy  vanishes, but prevails in the outer portion of a swept wing, since in most 
cases dp/dy becomes relatively large, or infinite, a t  the tip. This explains why a 
sweptback wing has a lesser margin to tip stall than an unswept or sweptforward wing. 
For the same reason, an oblique wing has an inherent rolling moment due to the 
induced upwash which is asymmetrically distributed in this case. 

Evaluation of C, 
The integral C, ( 4 . 7 ~ )  for the unsteady upwash correction contains E(lu1, u,Q) ,  

defined by (4.6c), as a part of its integrand; thus the task of evaluating C, amounts 
to computing a double integral for each y. The procedure employed in this and 
subsequent studies adopts a formula developed by Watkins, Runyan & Cunningham 
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(1957) for the representation of the irrational fraction t / ( l  +t)): occurring in (4.6). 
Namely, 

t 
- N  - 1 - (0.101) e-0~329t-0.899e-1~4067t-0.09480933e-2~90tsin~t. (4.11) 
(1  + t”): 

This gives an excellent approximation over the entire range oft ,  which is graphically 
indistinguishable from the original function. The function E may then be evaluated 
by a simple quadrature. 

The steady state 

The theory presented includes the analysis for the steady case (52 = 0), which 
furnishes a complete solution for the curved lifting-line problem considered earlier 
by Thurber (1965). 

Weissinger’s (1947) method mentioned earlier consists of replacing the wing section 
by a concentrated bound vortex at the quarter chord line and computes the upwash 
(flow angle) at the three-quarter chordline. This corresponds to an incomplete 
calculation of the outer solution $L. Another difficulty also appears in Weissinger’s 
original upwash computation procedure, which is believed to account for its failing 
at high A ,  as noted by Jones & Cohen (1957). I n  the case of straight elliptic oblique 
flat plate a t  incidence, it can be shown (Cheng & Murillo 1982) that  the Weissinger 
method and the present theory agree if the major axis of the planform is set near 
the 15 yo chord from the leading edge, but differ considerably if the axis were located 
near the trailing edge. 

It has been observed from an application to transonic forward-swept wings that 
a skew symmetry exists in the swept-angle influence on 3-dimensional corrections, 
which permits useful correlations of steady flows over forward-swept and aft-swept 
wings pertaining to an otherwise identical wing geometry (Cheng 1983). From the 
results established in $03 and 4, we may find the counterpart of this skew symmetry 
property in the (linear) subsonic range. Examination of the 3-dimensional corrections 
in the steady limit reveals that  they fall into two groups: one is independent of the 
sweep; while the other depends on l/il but changes algebraic sign with the local sweep, 
provided that the wing bend is either zero (2, = 0) or changing sign with the sweep 
(2, = sgn AlZ,l). It is then possible to  relate the solution for the forward- and aft-swept 
wings a t  corresponding points of the flow field as q5bs = 2#& - $is, which gives 

c;Fs = 2c;w - c;As, 

where the subscript US refers to the unswept wing. 

5. Lunate-tail models as examples: comparison with doublet-lattice 
solutions 

This section will present lift distributions from the theory and their comparison 
with corresponding data from the doublet-lattice method (Albano & Rodden 1969) 
for a family of oscillating crescent-moon shaped wings in the regime 52 = kA, = O( l ) ,  
including the quasi-steady limit 52 --f 0. Having in mind the performance analysis in 
Part 2 and the importance of proportional feathering, the study will consider modes 
of carangiform motion with and without the proportional feathering. Solutions from 
Albano & Rodden’s method are known to  be satisfactory, except that  the original 
procedure cannot reproduce the correction pressure jump for the jirst element 
adjacent to a leading edge ; this aspect has been improved by Lan (1979). Nevertheless, 
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for the sole purpose of assessing the asymptotic theory in the surface-lift distribution, 
Albano & Rodden’s method will suffice. 

5.1. Mode of motion and planform 

We will now consider the modelling of a caudal fin in a carangiform mode as an 
isolated wing, which is capable of maintaining adequate proportional feathering at 
each span station, a t  least to a first approximation. For this purpose, we will assume 
an oscillatory surface motion made up of two modes; each composes of pitching and 
heaving about its own axis, with 

z, = Re {eb eiWt[ZA - ( x  - xA)]  + ecO eiWt[So( y’) - Oio( y ’ ) (x’ - xi(  y ‘))I}, (5.1 ) 

where 8, and xA are constants, with x A  taken to be real. For convenience the overbars 
in x and x A  have been dropped, and all terms inside the two square brackets are 
treated as unit-order quantities or smaller. The first mode, expressed as a linear 
function of the Cartesian (outer) variable x ,  represents the heaving and pitching 
motion of a rigid flat plate with the pitch axis at x = xA,  which is usually not far 
from the pedunc1e.t The latter axis will be referred to as the major pitch axis 
(figure 2) .  The second mode, expressed in the curvilinear (inner) variables x’ and y’, 
describes the additional heaving-pitching motion of the fin section, with its local 
(curved) pitch axis set at a distance coxL(y’) from the centreline (cf. thin dash-dotted 
curves in figure 2) .  The constant SA determines the transverse displacement of the 
major pitch axis of the model. A Zo(y’) =# 0 would allow additional wing bending at 
the local hinge line x’ = xi .  Allowance for a spanwise variation in the local pitching 
amplitude and in its phase through So($) is essential for the exercise of proportional 
feathering a t  the local span station. For the application to an ornithopter model, one 
simply reorients the major axis from x = x A  to y = 0; the first square bracket in (5.1) 
should then be altered to Iyl, with subsequent changes in (5.4)-(5.6) to be detailed 
in Part 2. 

A parabolic shape 
x = Ky2 (5.2) 

will be assumed for the planform leading edge, which, for convenience, will be taken 
as the reference centreline z = x,(y) in the subsequent application. To facilitate 
computation work, the planform trailing edge is not given in terms of x and y ,  but 
determined by the local wing chord measured normal to the y’ axis: 

C ( Y ’ )  = co(1 -YE),  

where ye is a known function of y’ (figure 3).  

(5.3) 

5.2. Wing boundary conditions : a local feathering parameter 

The functions V(O), V(lo) and V(O1) in the wing boundary condition (3 .5b)  can be 
calculated either from (3.6) or directly from the convective derivative of the z, given 
by (5.1) for the model. The results can be written for an arbitrary planform as follows: 

t The posterior body section having the minimum width, where the necking is most pronounced, 
is referred to as the peduncle. 
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Y t  I 

I i  
FIGURE 2. The major pitching axis (in straight dash4otted line) and the curved local pitching axis 

(in thin dash-dotted curve) for the special class of the lunate-tail model analysed. 

FIGURE 3. Planform and coordinates used in the lunate-tail model. Note that 
c” = COG’ = c,(l--y2). 

where xc((y‘)) = z,(y,). Thus V(O) is independent of x’, while V(l0) and V(O1) are linear 
in x’ , signifying a streamline-curvature effect. A parameter corresponding to the 
proportional feathering parameter of Lighthill (1969, 1970) may be identified as 

i( sec A + So) 
Qr? sec A 

O r  

This quantity is independent of x’ and can be used to eliminate Oio(y’) in (5.4). The 
factor sec A + Oi, above is the sum of the maximum angles (normalized by 6 )  of the 
rigid-plate pitching and of the local pitching; the product Qasecr l  in (5 .5)  is the 
maximum heaving velocity normalized by SU, a t  the station y’ given by the rigid-plate 
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pitching mode.? Indeed, eliminating 2, from (5.4), P ( O )  can be brought to a form 
comparable to Lighthill’s (1969, 1970) : 

PO) = -iQl?(l- 0) see A .  (5.6) 

The parameter 0 controls the departure of V(O) from the perfect feathering value, 
P(O) E 0. The condition - co < 0 < 1 should provide a local twist k0(y’) to ensure 
the proper incidence relative to the trajectory of the hinge for generating a positive 
thrust component from the Joukowski lift (at all times, according to the quasi-steady 
local strip themy). 

The 0 considered in most examples in 55.4, and in Part 2, falls in the range 
0 < 0 < 1 ; for simplicity, its value is taken to be uniform spanwise. Examples with 
a fixed 0 will be referred to hereinafter as the ‘feathering cases’. As contrasting 
examples, cases with 2, = Po = 0, corresponding to a rigid flat plate in pitch, will also 
be studied. They will be referred to as the ‘rigid cases’. It must be emphasized that 
0 of (5 .5)  and (5.6) determine the wing upwash Dz,/Dt only in the limit A;l-tk-tO. 
The approach to a more genuine perfect-feathering condition corresponding to 
Dz,/Dt = 0 would call for additional 3-dimensional and unsteady constraints 
(Ir(l0) = V(01) = 0). 

5.3 Surface lift distributions and circulation 

The analytic base for the hydromechanical performance is the surface-lift distribution, 
or the Cb jump, calculated from jumps of @(lo) and @(O1) according to (3.18). From 
the lift distribution one can determine the surface contributions to the thrust and 
the power as well as the thrust component of the leading-edge suction. 

For the mode shape (5.1), the jumps in @ and their derivatives in question can be 
expressed in terms of the surface coordinates (x’, y,,), the local chord c’, local sweep 
and curvature A and K ’ ,  and the values of Lo or 0, x;, Po etc., and also the major axis 
locations xA and the P A ,  which prove to be crucial for hydrodynamic performance. 
They are given explicitly in (5.7) in Cheng & Murillo (1982). 

To pompute Vgo)  and V&, the leading-order circulation p ( y )  = T(O)( (yc) )  cos A ,  
with T(O) = -n v(O)c’, is required. The latter can be computed alternatively as 

f (O) (y )  = -n(l+a,cosA)c’+ixQl’?c’. (5 .8a,  b)  

The distributions p ( y )  for the feathering and rigid cases can be directly inferred from 
(5.8a, b)  with the substitution of fit' = (Ky2  - xA - P A )  (1 - y2)  and Oi, = 0 respectively. 
The contrast of the two mode shapes is significant (especial1 for the carangiform 

in a rigid case but is relatively small in a feathering case. 

h 

f (O) (y )  = inGl(l-Q)l?c’, 

prototypes having small lzAl and 1 . ~ ~ 1 )  because the real part of pu) is seen to dominate 

5.4. Results and comparison 

For the comparison study, the surface-lift distributions [Cb]l, have been computed 
as functions of z’ and yc(y’) from (3.18) for several sets of A ,  K ,  52, xA, xi, P o ,  P A ,  
etc., corresponding to the mode shape to be studied in the subsequent performance 
analysis. In all cases examined below, we take P A  = Po = 0, and the local pitch axis 
is set a t  the local quarter-chord point, i.e. at x’ = ic‘. To facilitate comparison with 
the doublet-lattice method, this chordwise distribution a t  a fixed yc is trans- 
ferred analytically to a neighbouring wing section of fixed y as function 
of f = (x-xLE)/(zTE-xLE). The final result of [CJ = [C;] cos2Ac, where 

t The parameter 8 may be seen to be proportional to the amplitude of the tail pitching angle 
and inversely proportional to the tail-beat frequency and the heaving amplitude. 
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A ,  = A(y‘) = A((y,)), will be compared with the corresponding data from the 
doublet-lattice method. 

The doublet-lattice method of Albano & Rodden (1969) gives numerical solutions 
to the linearized compressible-flow equation for an oscillatory wing. In  its appli- 
cation, the half-wing of a lifting surface with bilateral symmetry is divided into N ,  
strips, each of which is subdivided into N ,  intervals chordwise, giving a total of 
N ,  x N ,  panels or elements. The lift distribution over each panel is represented by 
a line of doublet singularity (for the acceleration potential) along the quarter-chord 
line of the panel. The impermeability condition of the wing is satisfied by the induced 
velocity computed from the doublet lattice (acceleration potential) a t  a ‘receiving 
point’ identified with the midpoint a t  the three-quarter chord line of each panel, 
giving N ,  x N ,  algebraic equations for the determination of the lift on each panel. 
The algorithm is implemented by a second-degree polynomial fit for a factor in a 
kernel function for each panel, and by the use of the Watkins et al. (1959) 
representation, cf. (4.14), to aid the evaluation of the kernel. The available program 
limits the total number of panels ( N ,  x N,)  to 100. Owing to this limitation and to 
the polynomial approximation, the adequacy of this numerical method appears to 
be uncertain for a high-aspect-ratio wing (according to Albano & Rodden 1969). The 
proper combination of N ,  and N ,  for achieving a maximum accuracy is also unclear. 
To obtain the pressure coefficient from numerical solutions, we divide the lift of the 
individual panel from the program by its area and interpret it  to be the pressure at 
the midpoint of the quarter-chord line, as successfully practiced by Albano & Rodden 
(1969). 

Rigid plate at incidence r i 0  = 0,  Q + 0 

Figure 4 represents results for the normalized chordwise pressure difference 
- [cp]/2c versus x for a rigid plate in the quasi-steady limit Q + O ,  corresponding 
to a flat (zero-camber) lunate-shaped wing a t  incidence in a steady stream. The results 
are computed for a parabolic leading edge with an average sweep parameter K = 0.50, 
and an aspect ratio A ,  = 15; the major axis is located at xA = - 0.20. The distributions 
determined from the theory (in solid curves) and from the doublet-lattice method (in 
open circles) are shown for five span stations y = 0.025,0.175,0.375,0.575 and 0.875. 
The uniform agreement of the latter with data from the Albano-Rodden code is clear. 
For this data set, 20 uniformly spaced spanwise stations over the half-span are used 
in the AlbanwRodden code, i.e. N ,  = 20; only five chordwise panels ( N ,  = 5 )  are left 
for each spanwise strip. One must note, nevertheless, that the experience with the 
code for Q = 0 described above does not fully reflect the property of the Albano- 
Rodden code since the code reduces virtually to the vortex-lattice method (Hedman 
1965) in this limit. 

Rigid-plate pitching: 8, = 0, 52 = 1 

A more critical comparison with the doublet-lattice method is given in figure 5, 
where the real and imaginary parts of the pressure differences on a lunate-shaped wing 
in pitching oscillation are presented. The planform and mode shape are identical with 
those of the preceding figure except for a non-vanishing reduced frequency, 52 = 1. 
As in the preceding figure, the strip theory (in dashes) gives a higher -Re [C,] than 
the doublet-lattice method (in open circles) near the root (y+O), and a lower 
-Re [C,] near the tip (y+ 1). The agreement of the doublet-lattice data with theory 
(in full curves) is good with a slight deterioration in the imaginary parts near the tip 
(y = 0.875 and 0.975). Since the local wing chord vanishes towards the tip, the aspect 
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FIGURE 4. Chordwise lift distributions at five span stations computed from the theory (full curves), 
from the quasi-steady strip method (dashed), and from the Albano-Rodden (doublet-lattice) 
method (open circles) for a rigid hate-shaped plate in the quasi-steady limit : &,, = G' = 0, 
K = 0.50, A ,  = 15, ZA = -0.2, LA = 2, = 0. 

ratio of the individual wing panels at each span station in the doublet-lattice method 
becomes progressively higher as one moves towards the tip ; this invariably invalidates 
the polynomial representation in the kernel in the Albano-Rodden method indicated 
earlier. In  addition, the errors resulting form the replacement of the smooth lunate 
planform by a triangular panel at the tip in the numerical method may become quite 
large. 

Feathering case: 8 = 0.60, 52 = 1 
We obtain solutions from the theory and from the doublet-lattice method for 

the same lunate planform ( K  = 0.50, A ,  = 15) and a mode shape pertaining to 
I ,  = I ,  = 0, x, = -0.2, SZ = 1, with the feathering parameter set a t  8 = 0.60. The 
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10 

FIGURE 5. Chordwise lift distributions at six span stations computed from the theory (full curves), 
from the quasi-steady strip method (dashes) and from the Albano-Rodden method (open circles) 
forarigidlunate-shapedplateinpitchingoscilletion: a, = 0, D = 1, K = 0.50, A,  = 15, xA = -0.20, 
9,  = f0  = 0. 

solid curves of figure 6 show the theoretical chordwise pressure differences for this 
feathering case at five span stations, where agreement with the Albano-Rodden code 
(open circles) is found to vary from good to fair. Departure is noticeable at  the two 
stations close to the plane of symmetry (y = 0.025, 0.137), where the improvement 
of the present theory over the strip method (shown in dashes) remains evident, 
however. 

A source of the noticeable discrepancy could come from an inadequacy of the 
asymptotic results in approximating the real part of the lift distribution a t  the two 
inner span stations, which is itself quite small. Another, most likely, source for the 
discrepancy may be traced t o  the inaccuracy in prescribing the wing boundary 
condition for the Albano-Rodden code, which calls for a transformation of the 
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FIGURE 6. Chordwise lift distributions at six span stations computed from the theory (full curves), 
from the quasi-steady strip method (dashes) and from the AlbanwRodden method (open circles) 
for an  oscillating lunate-tail model : 8 = 0.60, Q = 1, K = 0.50, = 0.25, zA = -0.20, tA = %,, = 0, 
A,  = 15. 

curvilinear to the Cartesian coordinates. In the transformation, terms of order AT2 
were omitted. (A similar discrepancy is not found in the rigid-plate cases, for which 
the prescribed boundary values are exact.) Results obtained for examples identical 
with those of figures 4 4  except for a lower aspect ratio A, = 10 (not shown) indicate 
that similar agreement with the vortex-lattice method is found and that the 
improvement over the strip method is much more significant in this case. 

6. Summary and discussion 
The asymptotic theory of a high-aspect-ratio wing (Prandtl 1918; Van Dyke 

1964a, b) has been generalized to an oscillating lifting surface with a curved axis in 
a low-frequency domain D 3 kA, = O ( l ) ,  where the flow next to the wing section is 

12 F L M  143 
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nearly quasi-steady, while the velocity induced by the unsteady wake vorticities is 
as large as that induced by the trailing vortex system in Prandtl’s lifting-line theory. 
Application to model problems of lunate tail yields explicit surface-lift distributions 
in reasonable agreement with corresponding data from the doublet-lattice method 
(Albano & Rodden 1969) in most span stations. Limited discrepancies are found on 
the tip and root sides in some cases and are believed to be traceable to errors in 
prescribing input data to the Albano-Rodden code for certain mode shape. They are 
not large enough to invalidate the conclusions on the comparison study. 

The theory is limited to a weakly perturbed potential flow and a nearly planar 
lifting surface with a centreline curvature no stronger than O(b-l). Allowing minor 
modifications, results in $95.1-5.3 are applicable to ornithopter models for certain 
birds and insects. The theory presented in 993 and 4 is sufficiently explicit, yet 
general, to  promise an analytical attack of the 3-dimensional effects on the dynamics 
and aeroelasticity of high-aspect-ratio swept wings and its extension to rotors. In the 
special limit 8+0, the work completes the solution to the crescent-moon wing 
problem initiated by Thurber (1965) ; it also provides a basis for studying the limi- 
tation of Weissinger’s (1947) ‘$-method’ for swept wings. From the explicit results, 
symmetry properties of the 3-dimensional corrections with respect to the local sweep 
angle A(y’) in the steady case are noted, by which aerodynamic data of the 
sweptforward wing can be correlated with corresponding data of sweptback and 
unswept wings. Among the essential ingredients distinguishing the present work from 
a conventional lifting-line analysis are the corrections in the equations governing the 
inner problem due to both the (local) centreline curvature and the cross-stream 
component of the (locally) shed vorticity. In  the context of a steady or quasi-steady 
flow, the logarithmic upwashes noted in $4.4 explain the tip-stall tendency of a 
swept-back wing as well as the rolling tendency of an oblique wing. 

Records of animals swimming and flying do not strongly support the assumption 
of the purely sinusoidal oscillation at a single frequency. In  principle, the solution 
for a more general motion could be generated from a weighted inverse Fourier 
transform of the present result in time, which is limited in this study, however, to 
the low frequency range. 

Considering a straight, unyawed, flapping wing, Jones (1980) noted an interesting 
analogy between the problem of minimizing the wing-flapping energy and the 
problem of minimizing the induced drag for wings in steady motion having a given 
lift and root-bending moment. Implicit in Jones’ work is the assumption of the 
quasi-steady limit. Estimates from wing-beat frequencies and flight speeds of 
common birds indicate, however, that Q = kA, belongs to the unit-order range in 
many cases. Interestingly, the subsequent analysis in Part 2 will show that propulsive 
performance is generally enhanced at an l2 + 0. 

A serious limitation of the present model is the assumption of the nearly planar 
wing and wake. This remains to be improved. The influence of vorticities shed from 
the body or dorsal fins ahead of the caudal fin has not been considered, which may 
also affect the flow and performance of the caudal fin significantly. 
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